

SANYO Semiconductors DATA SHEET

An ON Semiconductor Company

LV8729V — PWM Constant-Current Control Stepping Motor Driver

Overview

The LV8729V is a PWM current-controlled microstep bipolar stepping motor driver.

This driver can perform eight times of excitation of the second phase to 32W1-second phase and can drive simply by the CLK input.

Features

- Single-channel PWM current control stepping motor driver.
- BiCDMOS process IC.
- Output on-resistance (upper side : 0.35Ω ; lower side : 0.3Ω ; total of upper and lower : 0.65Ω ; Ta = 25° C, IO = 1.8A)
- 2-phase, 1-2 phase, W1-2 phase, 2W1-2 phase, 4W1-2 phase, 8W1-2 phase, 16W1-2 phase, 32W1-2 phase excitation are selectable.
- Advance the excitation step with the only step signal input.
- Available forward reverse control.
- Over current protection circuit.
- Thermal shutdown circuit.
- Input pull down resistance
- With reset pin and enable pin.

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VM max		36	V
Maximum output peak current	I _O max		1.8	А
Maximum logic input voltage	V _{IN} max		6	V
Maximum VREF input voltage	VREF max		6	V
Maximum MO input voltage	V _{MO} max		6	V

Continued on next page

- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

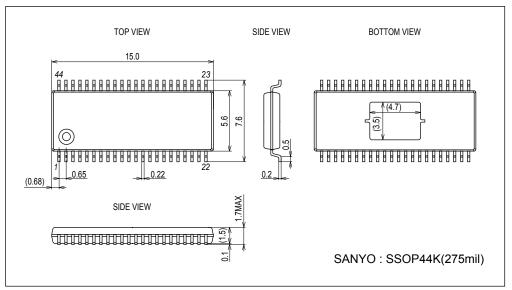
Continued from preceding page.

		•		
Parameter	Symbol	Conditions	Ratings	Unit
Maximum DOWN input voltage	V _{DOWN} max		6	٧
Allowable power dissipation	Pd max	*	3.85	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

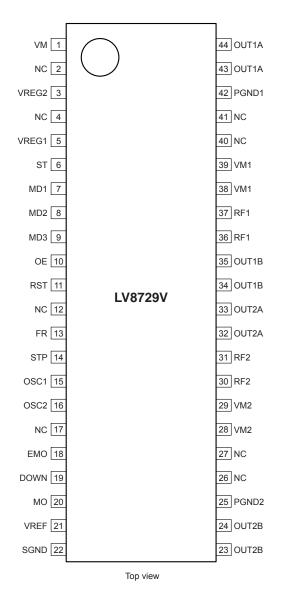
^{*} Specified circuit board : 90.0mm×90.0mm×1.6mm, glass epoxy 2-layer board, with backside mounting.

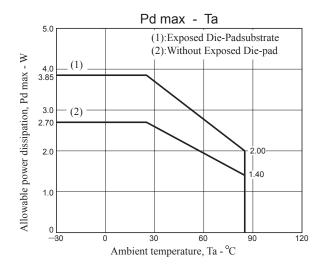
Allowable Operating Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VM		9 to 32	V
Logic input voltage	VIN		0 to 5	V
VREF input voltage range	VREF		0 to 3	V


Electrical Characteristics at $Ta = 25^{\circ}C$, VM = 24V, VREF = 1.5V

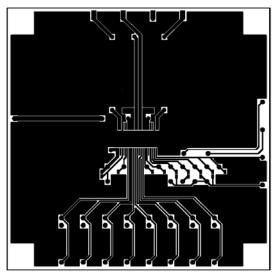
Doromotor	Symbol	Conditions		Ratings		Llmit
Parameter	Symbol	Conditions	min	typ	max	Unit μA mA °C °C μA μA V V kHz μA V V μA mV mV Hz V V Ω Ω
Standby mode current drain	I _M st	ST = "L"		70	100	μΑ
Current drain	IM	ST = "H", OE = "H", no load		3.3	4.6	mA
Thermal shutdown temperature	TSD	Design guarantee	150	180	200	°C
Thermal hysteresis width	ΔTSD	Design guarantee		40		°C
Logic pin input current	I _{IN} L	V _{IN} = 0.8V	3	8	15	μΑ
	I _{IN} H	V _{IN} = 5V	30	50	70	μΑ
Logic high-level input voltage	V _{IN} H		2.0			٧
Logic low-level input voltage	V _{IN} L				0.8	V
Chopping frequency	Fch	Cosc1 = 100pF	70	100	130	kHz
OSC1 pin charge/discharge current	losc1		7	10	13	μΑ
Chopping oscillation circuit	Vtup1		0.8	1	1.2	V
threshold voltage	Vtdown1		0.3	0.5	0.7	٧
VREF pin input voltage	Iref	VREF = 1.5V	-0.5			μΑ
DOWN output residual voltagr	V _O 1DOWN	Idown = 1mA		40	100	mV
MO pin residual voltage	V _O 1MO	Imo = 1mA		40	100	mV
Hold current switching frequency	Fdown	Cosc2 = 1500pF	1.12	1.6	2.08	Hz
Hold current switching frequency	Vtup2		0.8	1	1.2	٧
threshold voltage	Vtdown2		0.3	0.5	0.7	٧
VREG1 output voltage	Vreg1		4.7	5	5.3	V
VREG2 output voltage	Vreg2	V _M	18	19	20	٧
Output on-resistance	Ronu	I _O = 1.8A, high-side ON resistance		0.35	0.455	Ω
	Rond	I _O = 1.8A, low-side ON resistance		0.3	0.39	Ω
Output leakage current	l _O leak	V _M = 36V			50	μΑ
Diode forward voltage	VD	I _D = -1.8A		1	1.4	V
Current setting reference voltage	VRF	VREF = 1.5V, Current ratio 100%	0.285	0.3	0.315	٧


Package Dimensions

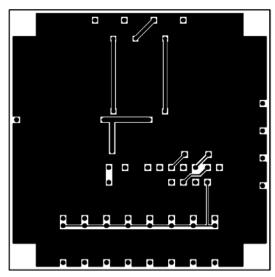

unit: mm (typ)

3333

Pin Assignment



Substrate Specifications (Substrate recommended for operation of LV8729V)


Size : $90\text{mm} \times 90\text{mm} \times 1.6\text{mm}$ (two-layer substrate [2S0P])

Material : Glass epoxy

Copper wiring density : L1 = 85% / L2 = 90%

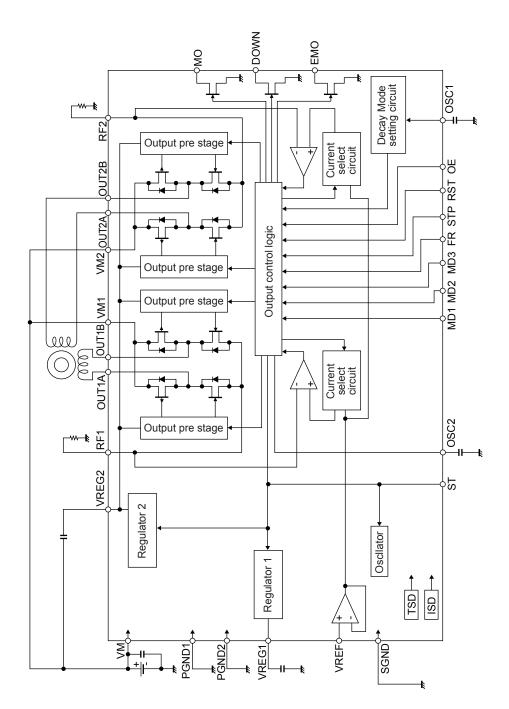
L1: Copper wiring pattern diagram

L2: Copper wiring pattern diagram

Cautions

- 1) The data for the case with the Exposed Die-Pad substrate mounted shows the values when 90% or more of the Exposed Die-Pad is wet.
- 2) For the set design, employ the derating design with sufficient margin.
 - Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as vibration, impact, and tension.

Accordingly, the design must ensure these stresses to be as low or small as possible.


The guideline for ordinary derating is shown below:

- (1)Maximum value 80% or less for the voltage rating
- (2)Maximum value 80% or less for the current rating
- (3)Maximum value 80% or less for the temperature rating
- 3) After the set design, be sure to verify the design with the actual product.

Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc.

Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction, possibly resulting in thermal destruction of IC.

Block Diagram

Pin Functions

Pin Fi	ınctions		
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
		Pin Functtion Excitation mode switching pin Excitation mode switching pin Excitation mode switching pin Output enable signal input pin Reset signal input pin Forward / Reverse signal input pin Step clock pulse signal input pin Chip enable pin.	Equivalent Circuit VREG1 Ο
			\$20kΩ 10kΩ ************************************
23, 24	OUT2B	Channel 2 Dever evertem ground	3839
25 28, 29 30, 31 32, 33 34, 35 36, 37 38, 39 42 43, 44	PGND2 V _M 2 RF2 OUT2A OUT1B RF1 V _M 1 PGND1 OUT1A	Channel 2 Power system ground Channel 2 motor power supply connection pin. Channel 2 current-sense resistor connection pin. Channel 2 OUTA output pin. Channel 1 OUTB output pin. Channel 1 current-sense resistor connection pin. Channel 1 motor power supply pin. Channel 1 Power system ground Channel 1 OUTA output pin.	(3)(4) (3)(4) (3)(3) (
21	VREF	Constant-current control reference voltage input pin.	VREG1 ο 500Ω GND ο

Continued on next page.

Continued	from preceding p	page.	
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
3	VREG2	Internal regulator capacitor connection	VM 0
		pin.	
			\$ 02K75
			Torio A
			\$ 35kΩ
			2kQ
			→
			→
			<u> </u>
			T
			GND ○ • • •
5	VREG1	Internal regulator capacitor connection	VM O +
		pin.	
			★ 一
			→ — — — — — — — — — — — — — — — — — — —
			2κΩ
			ξ78kΩ
			│
			\$26kΩ
			GND O
			0.13
18 19	EMO DOWN	Over-current detection alarm output pin. Holding current output pin.	VREG1 O
20	MO	Position detecting monitor pin.	*
		The second secon	¥
			├ ── ├
			*
			ξ 100kΩ
			GND O
			5112 5
15	OSC1	Copping frequency setting capacitor	VREG5 ○ • •
16	OSC2	connection pin. Holding current detection time setting	
10	3002	capacitor connection pin.	
			30002
			GND O
			└
			<u> </u>

Reference describing operation

(1) Stand-by function

When ST pin is at low levels, the IC enters stand-by mode, all logic is reset and output is turned OFF. When ST pin is at high levels, the stand-by mode is released.

(2) STEP pin function

In	out	Operating mode
ST	STP	
Low	*	Standby mode
High		Excitation step proceeds
High	—	Excitation step is kept

(3) Excitation setting method

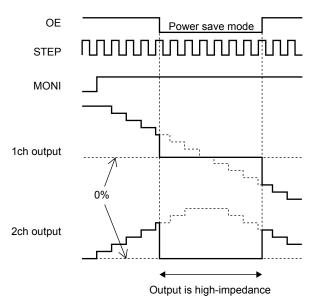
Set the excitation setting as shown in the following table by setting MD1 pin, MD2 pin and MD3 pin.

	Input		Mode	Initial position		
MD3	MD2 MD1		(Excitation)	1ch current	2ch current	
Low	Low	Low	2 phase	100%	-100%	
Low	Low	High	1-2 phase	100%	0%	
Low	High	Low	W1-2 phase	100%	0%	
Low	High	High	2W1-2 phase	100%	0%	
High	Low	Low	4W1-2 phase	100%	0%	
High	Low	High	8W1-2 phase	100%	0%	
High	High	Low	16W1-2 phase	100%	0%	
High	High	High	32W1-2 phase	100%	0%	

The initial position is also the default state at start-up and excitation position at counter-reset in each excitation mode.

(4) Output current setting

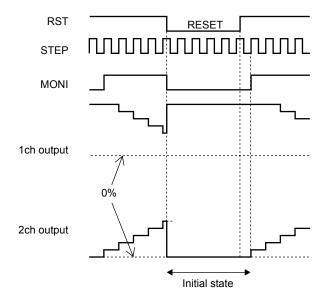
Output current is set shown below by the VREF pin (applied voltage) and a resistance value between RF1(2) pin and GND.


$$I_{OUT} = (VREF / 5) / RF1 (2)$$
 resistance

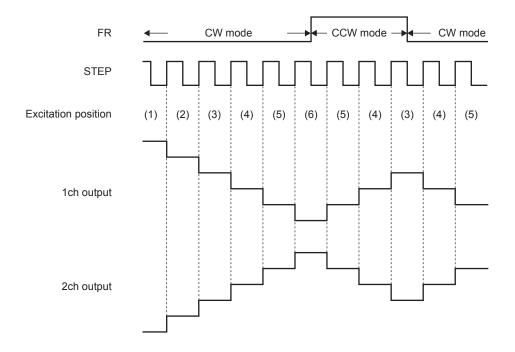
(Example) When VREF = 1.1V and RF1 (2) resistance is 0.22Ω , the setting is shown below.

$$I_{OUT} = (1.1 \text{V} / 5) / 0.22 \Omega = 1.0 \text{A}$$

(5) Output enable function


When the OE pin is set Low, the output is forced OFF and goes to high impedance. However, the internal logic circuits are operating, so the excitation position proceeds when the STP is input. Therefore, when OE pin is returned to High, the output level conforms to the excitation position proceeded by the STP input.

^{*} The setting value above is a 100% output current in each excitation mode.


(6) Reset function

When the RST pin is set Low, the output goes to initial mode and excitation position is fixed in the initial position for STP pin and FR pin input. MO pin outputs at low levels at the initial position. (Open drain connection)

(7) Forward / reverse switching function

FR	Operating mode
Low	Clockwise (CW)
High	Counter-clockwise (CCW)

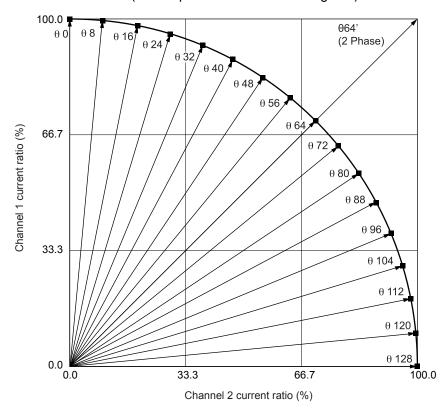
The internal D/A converter proceeds by a bit on the rising edge of the step signal input to the STP pin. In addition, CW and CCW mode are switched by FR pin setting.

In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current.

In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.

(8) EMO, DOWN, MO output pin

The output pin is open -drain connection. When it becomes prescribed, it turns on, and each pin outputs the Low level.


Pin state	EMO	EMO DOWN					
Low	At detection of over-current	Holding current state	Initial position				
OFF	Normal state	Normal state	Non initial position				

(9) Chopping frequency setting function

Chopping frequency is set as shown below by a capacitor between OSC1 pin and GND. Fcp = $1 / (Cosc1 / 10 \times 10^{-6})$ (Hz)

(Example) When Cosc1 = 200pF, the chopping frequency is shown below. Fcp = 1 / (200 x 10^{-12} / 10 x 10^{-6}) = 50(kHz)

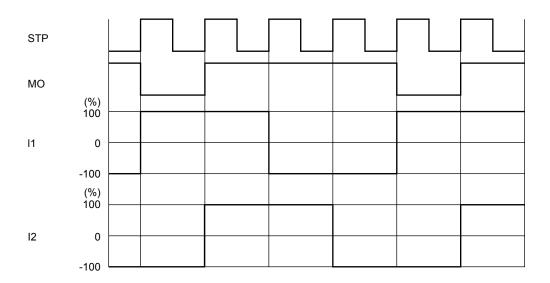
(10) Output current vector locus (one step is normalized to 90 degrees)

Current setting ratio in each excitation mode

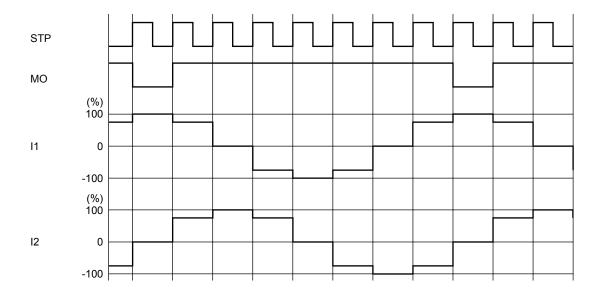
Curre	ent sett	ing ratio	o in ead	ch excit	ation r	node										
STEP	32W1-2	phase(%)	16W1-2	phase(%)	8W1-2 p	phase(%)	4W1-2 p	hase(%)	2W1-2 p	hase (%)	W1-2 pl	nase (%)	1-2 pha	ase (%)	2 pha	se (%)
SILF	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ0	100	0	100	0	100	0	100	0	100	0	100	0	100	0		
θ1	100	1														
θ2	100	2	100	2												
θ3	100	4														
θ4	100	5	100	5	100	5										
θ5	100	6														
θ6	100	7	100	7												
θ7	100	9														
θ8	100	10	100	10	100	10	100	10								
θ9	99	11														
θ10	99	12	99	12												
θ11	99	13														
θ12	99	15	99	15	99	15										
θ13	99	16														
θ14	99	17	99	17												
θ15	98	18														
θ16	98	20	98	20	98	20	98	20	98	20						
θ17	98	21														
θ18	98	22	98	22												
θ19	97	23														
θ20	97	24	97	24	97	24										
θ21	97	25														
θ22	96	27	96	27												
θ23	96	28														
θ24	96	29	96	29	96	29	96	29								
θ25	95	30														

Continued on next page.

Continued from preceding page.

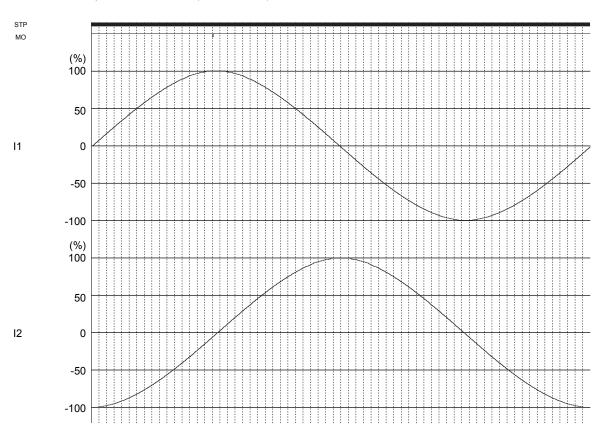

Continue	ed from pre	eceding pa	ge.													
STEP	32W1-	2 phase	16W1-	2 phase	8W1-2	2 phase	4W1-2	2 phase	2W1-2	2 phase	W1-2 p	hase (%)	1-2 ph	ase (%)	2 phas	se (%)
	1 ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ26	95	31	95	31												
θ27	95	33														
θ28	94	34	94	34	94	34										
θ29	94	35														
θ30	93	36	93	36												
θ31	93	37														
θ32	92	38	92	38	92	38	92	38	92	38	92	38				
θ33	92	39														
θ34	91	41	91	41												
θ35	91	42														
θ36	90	43	90	43	90	43										
θ37	90	44														
θ38	89	45	89	45												
θ39	89	46	07	73												
θ40	88	47	88	47	88	47	88	47								
		48	00	4/	00	4/	00	47								
041	88		07	40												
042	87	49	87	49	-	 	+					-				
θ43	86	50	0.5		0.5		 	 	 	1	1					
θ44	86	51	86	51	86	51	1	1	1	1	1					-
θ45	85	52				 	 	 	<u> </u>							
θ46	84	53	84	53		1	1	1			1					
θ47	84	55														
θ48	83	56	83	56	83	56	83	56	83	56						
θ49	82	57														
θ50	82	58	82	58												
θ51	81	59														
θ52	80	60	80	60	80	60										
θ53	80	61														
θ54	79	62	79	62												
θ55	78	62	- 12	02												
θ56	77	63	77	63	77	63	77	63								
θ57	77	64	- / /	03	- / /	03	- / /	03								
			7.0													
θ58	76	65	76	65												
θ59	75	66														
θ60	74	67	74	67	74	67										
θ61	73	68														
θ62	72	69	72	69												
θ63	72	70														
θ64	71	71	71	71	71	71	71	71	71	71	71	71	71	71	100	100
θ65	70	72														
θ66	69	72	69	72												
θ67	68	73														
θ68	67	74	67	74	67	74										
θ69	66	75														
θ70	65	76	65	76												
θ71	64	77									1					
θ72	63	77	63	77	63	77	63	77	t							
θ73	62	78	03	//	03	''	03	' '	<u> </u>		1					
			62	70		 	+									
074	62	79	62	79		 	+					-				
075	61	80		0.0		00	 	 	 	 	+					-
θ76	60	80	60	80	60	80	1	1	1	1	1					-
θ77	59	81				 	 	 	<u> </u>							
θ78	58	82	58	82		!	!	!	!	1						
θ79	57	82														
θ80	56	83	56	83	56	83	56	83	56	83						
001	55	84														
θ81	53	84	53	84												
θ81 θ82	33															
	52	85			1	86		1	1							
θ82		85 86	51	86	51	80										
θ82 θ83 θ84	52 51	86	51	86	51	80										
θ82 θ83 θ84 θ85	52 51 50	86 86			51	80										
θ82 θ83 θ84 θ85 θ86	52 51 50 49	86 86 87	51	86	51	80										
 θ82 θ83 θ84 θ85 θ86 θ87 	52 51 50 49 48	86 86 87 88	49	87			Δ7	88								
θ82 θ83 θ84 θ85 θ86	52 51 50 49	86 86 87			47	88	47	88								

Continued on next page.

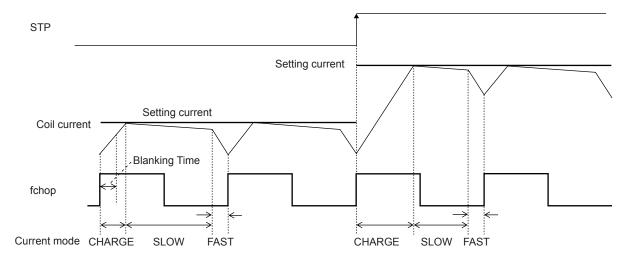

Continued from preceding page.

STEP	32W1-	2 phase	16W1-2 phase		8W1-2 phase		4W1-2 phase		2W1-2 phase		W1-2 phase (%)		1-2 phase (%)		2 phase (%)	
	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ91	44	90														
θ92	43	90	43	90	43	90										
θ93	42	91														
θ94	41	91	41	91												
θ95	39	92														
θ96	38	92	38	92	38	92	38	92	38	92	38	92				
θ97	37	93														
θ98	36	93	36	93												
θ99	35	94														
θ100	34	94	34	94	34	94										
θ101	33	95														
θ102	31	95	31	95												
θ103	30	95														
θ104	29	96	29	96	29	96	29	96								
θ105	28	96														
θ106	27	96	27	96												
θ107	25	97														
θ108	24	97	24	97	24	97										
θ109	23	97														
θ110	22	98	22	98												
θ111	21	98														
θ112	20	98	20	98	20	98	20	98	20	98						
θ113	18	98														
θ114	17	99	17	99												
θ115	16	99														
θ116	15	99	15	99	15	99										
θ117	13	99														
θ118	12	99	12	99				ļ								
θ119	11	99														
θ120	10	100	10	100	10	100	10	100								
θ121	9	100						ļ								
θ122	7	100	7	100												
θ123	6	100														
θ124	5	100	5	100	5	100										
θ125	4	100														
θ126	2	100	2	100												
θ127	1	100														
θ128	0	100	0	100	0	100	0	100	0	100	0	100	0	100		

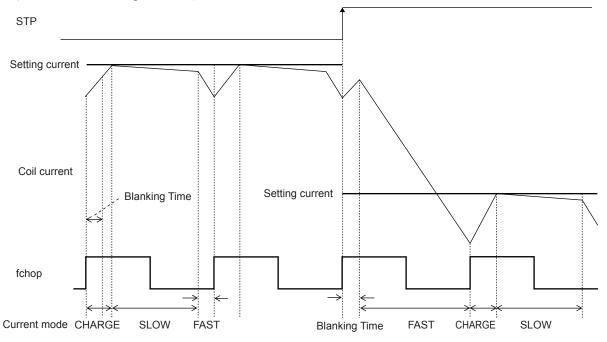
(11) Current wave example in each excitation mode (2 phase, 1-2 phase, 4W1-2 phase, 32W1-2 phase) 2-phase excitation (CW mode)


1-2 phase excitation (CW mode)

4W1-2 phase excitation (CW mode)



32W1-2 phase excitation (CW mode)



(12) Current control operation

(Sine-wave increasing direction)

(Sine-wave decreasing direction)

Each of current modes operates with the follow sequence.

- \cdot The IC enters CHARGE mode at a rising edge of the chopping oscillation. (A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1 μ s, regardless of the current value of the coil current (ICOIL) and set current (IREF)).
- · In a period of Blanking Time, the coil current (ICOIL) and the setting current (IREF) are compared.

If an ICOIL < IREF state exists during the charge period:

The IC operates in CHARGE mode until ICOIL \geq IREF. After that, it switches to SLOW DECAY mode and then switches to FAST DECAY mode in the last approximately 1 μ s of the period.

If no ICOIL < IREF state exists during the charge period:

The IC switches to FAST DECAY mode and the coil current is attenuated with the FAST DECAY operation until the end of a chopping period.

The above operation is repeated. Normally, in the sine wave increasing direction the IC operates in SLOW (+ FAST) DECAY mode, and in the sine wave decresing direction the IC operates in FAST DECAY mode until the current is attenuated and reaches the set value and the IC operates in SLOW (+ FAST) DECAY mode.

(13) Output short-circuit protection circuit

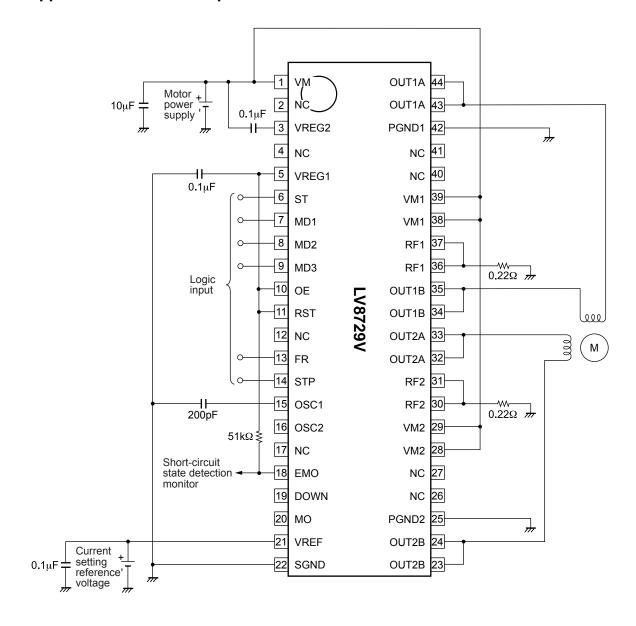
Built-in output short-circuit protection circuit makes output to enter in stand-by mode. This function prevents the IC from damaging when the output shorts circuit by a voltage short or a ground short, etc. When output short state is detected, short-circuit detection circuit state the operating and output is once turned OFF. Subsequently, the output is turned ON again after the timer latch period (typ. 256µs). If the output remains in the short-circuit state, turn OFF the output, fix the output to the wait mode, and turn ON the EMO output.

When output is fixed in stand-by mode by output short protection circuit, output is released the latch by setting ST = "L".

(14) Open-drain pin for switching holding current

The output pin is an open-drain connection.

This pin is turned ON when no rising edge of STP between the input signals while a period determined by a capacitor between OSC2 and GND, and outputs at low levels.


The open-drain output in once turned ON, is turned OFF at the next rising edge of STP.

Holding current switching time (Tdown) is set as shown below by a capacitor between OSC2 pin and GND. $Tdown = Cosc2 \times 0.4 \times 10^9$ (s)

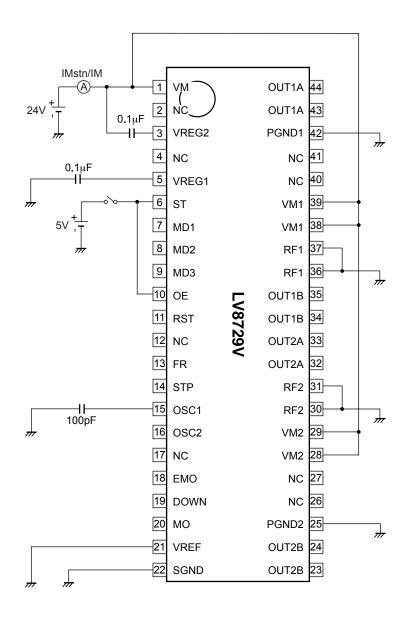
 $1 \text{down} - \text{Cosc2} \times 0.4 \times 10 \quad \text{(s)}$

(Example) When Cosc2 = 1500pF, the holding current switching time is shown below. $Tdown = 1500pF \times 0.4 \times 109 = 0.6 (s)$

Application Circuit Example

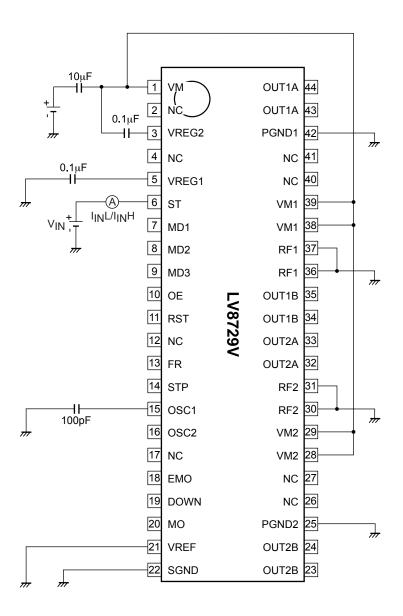
The above sample application circuit is set to the following conditions:

- · Output enable function fixed to the output state (OE = "H")
- · Reset function fixed to the output state (RST = "H")
- · Chopping frequency: 50kHz (Cosc1 = 200pF)


The set current value is as follows:

 I_{OUT} = (Current setting reference voltage / 5) / 0.22Ω

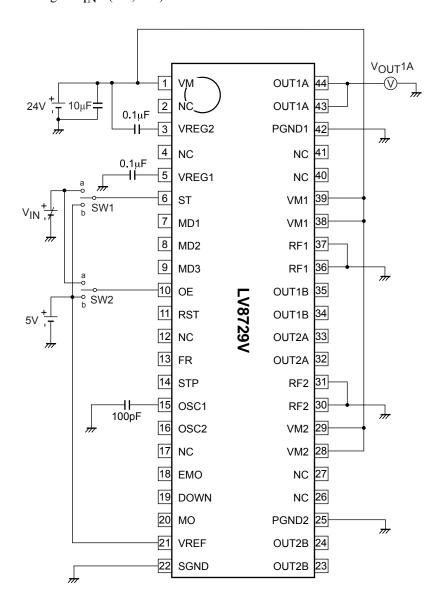
Measurement circuit diagram


Stand-by mode current drain: I_Mstn

Current drain: I_M

Turn OFF SW when measuring I_M stn. Turn ON SW when measuring I_M

Logic pin input current : $I_{IN}L$, $I_{IN}H$

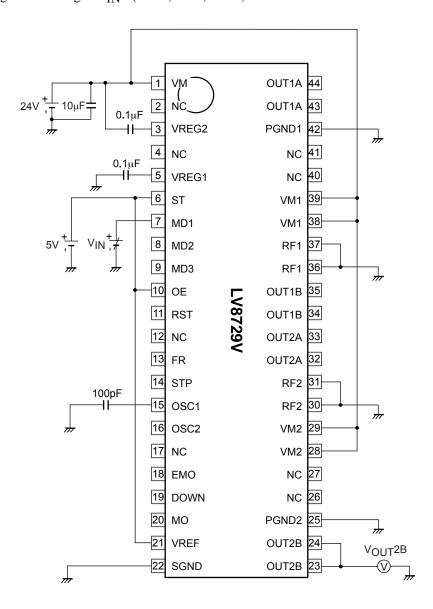


Set $V_{IN} = 0.8V$ when measuring $I_{IN}L$.

Set $V_{IN} = 5V$ when measuring $I_{IN}H$

This measurement is related to the ST pin. Take the same procedure for measurement of other pins.

 $\label{eq:logic_input_high-level_voltage} \ : \ V_{IN}H \ (\ ST, OE \)$ $\ Logic \ input \ low-level \ voltage \ : \ V_{IN}L \ (\ ST, OE \)$

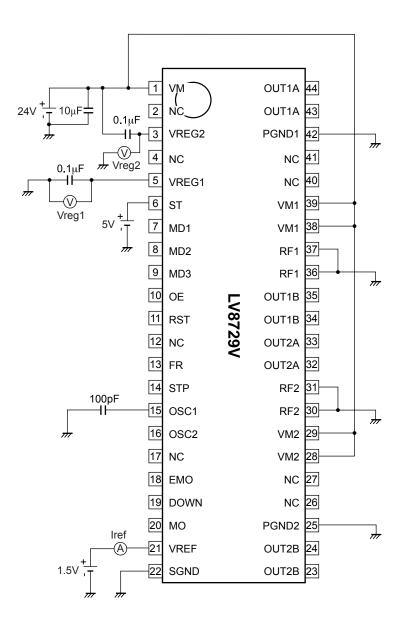


To measure the ST pin, set SW1 to the "a" side and SW2 to the "b" side. To measure the OE pin, set SW1 to the "b" side and SW2 to the "a" side.

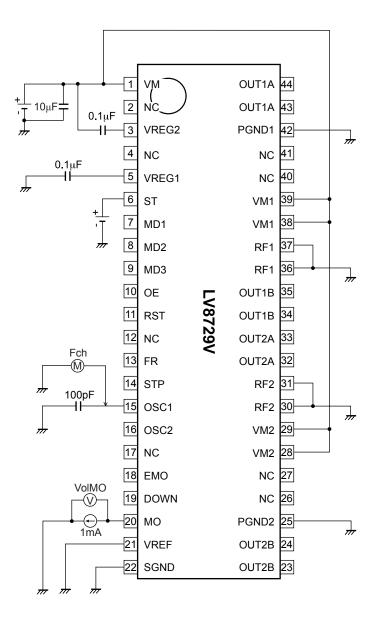
 $V_{IN}H: When \ V_{IN} \ is \ raised \ gradually \ from \ 0V, \ the \ V_{OUT}1A \ voltage \ changes \ from \ "L" \ to \ "H". \ The \ V_{IN} \ voltage \ at \ which \ the \ voltage \ changes \ from \ "L" \ to \ "H" \ is \ the \ V_{IN}H \ voltage.$

 $V_{IN}L$: When V_{IN} is raised gradually from 3V, the $V_{OUT}1A$ voltage changes from "H" to "L". The V_{IN} voltage at which the voltage changes from "H" to "L" is the $V_{IN}L$ voltage.

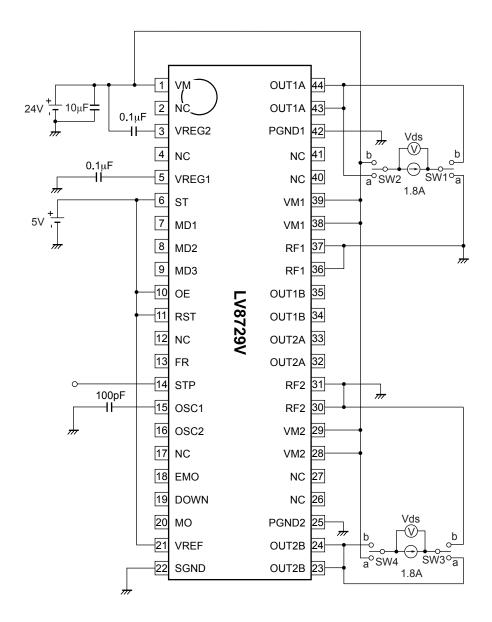
 $\label{eq:logic_input_high-level_voltage} \ : \ V_{IN} \ H \ (\ MD1, \ MD2, \ MD3 \) \\ Logic \ input \ high-level \ voltage \ : \ V_{IN} \ L \ (\ MD1, \ MD2, \ MD3 \) \\$



 V_{INH} : When V_{IN} is raised gradually from 0V, the $V_{OUT}2B$ voltage changes from "H" to "L". The V_{IN} voltage at which the voltage changes from "H" to "L" is the V_{INH} voltage.

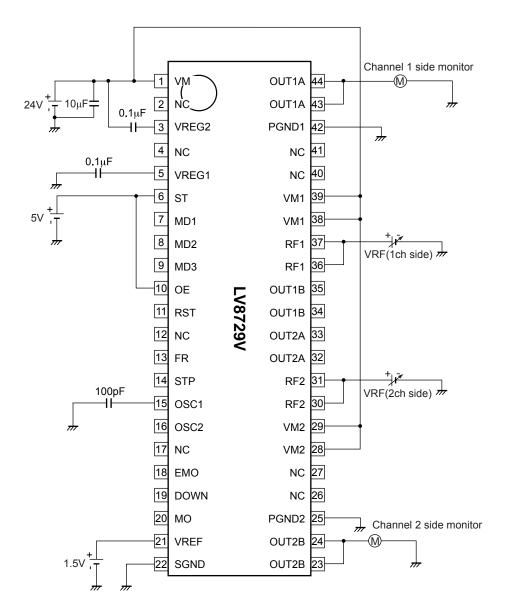

 $V_{IN}L: When \ V_{IN} \ is \ raised \ gradually \ from \ 3V, \ the \ V_{OUT}2B \ voltage \ changes \ from \ "L" \ to \ "H". \ The \ V_{IN} \ voltage \ at \ which \ the \ voltage \ changes \ from \ "L" \ to \ "H" \ is \ the \ V_{IN}L \ voltage.$

This measurement is related to the MD1 pin. Take the same procedure for measurement of MD2 and MD3 pins.


REG1 output voltage : Vreg1 REG2 output voltage : Vreg2 VREF pin input voltage : Iref

Copping frequency : Fch MO pin residual voltage : VOlMO

Output on-resistance: Ronu,Rond



When measuring OUT1A upper and OUT2B upper FETs, set SW1 to 4 to the "a" side.

When measuring OUT1A lower and OUT2B lower FETs, set SW1 to 4 to the "b" side.

This measurement is related to OUT1A and OUT2B. To measure OUT2A and OUT1B, enter two rectangular waves to the STP pin and carry out the procedure for measurement.

Current setting reference voltage: VRF

Raise the RF1 (2) pin voltage from 0V. The RF1 (2) voltage at which tje OUT voltage changes from "H" to "L" is VRF.

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of February, 2011. Specifications and information herein are subject to change without notice.