Welcome! Log In Create A New Profile


Dual extrusion, E-only move causing XYZ motion, bug in Marlin?

Posted by sphereinabox 
Dual extrusion, E-only move causing XYZ motion, bug in Marlin?
January 25, 2014 01:50PM
I've assembled a Kossel Mini with two extruders (and a dual-e3d end effector) and I'm running Marin 1 from [github.com] downloaded 1/19/2014 with a the modified configuratoin below using RAMPS 1.4. Unfortunately after switching tools then extruding, my printer moves up in all 3 delta axes and doesn't extrude.

Each extruder works fine on its own. (as in, T0 or T0, home, print using g-code without tool changes)

Any ideas? I kind of feel like this is a Marlin bug.

Does my sample g-code work fine on a cartesian dual-extruder?

I'm running a RAMPS board from RepRapDiscount with no heated bed.

Sample problem g-code:
M302 ; allow cold extrudes
G0 F9000 Z150
G92 E0                  ;zero the extruded length
G0 F200 E10             ;extrude 10mm of feed stock
G92 E0                  ;zero the extruded length again
G92 E0                  ;zero the extruded length
G0 F200 E10             ;extrude 10mm of feed stock <- this is where things get weird and the printer slowly moves up on all delta axes at different speeds ignoring homing switches or delta kinematics
G92 E0                  ;zero the extruded length again


// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration

//============================= DELTA Printer ===============================
// For a Delta printer rplace the configuration files wilth the files in the
// example_configurations/delta directory.

// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "(Nick, Kossel Attempt)" // Who made the changes.

// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
#define SERIAL_PORT 0

// This determines the communication speed of the printer
#define BAUDRATE 250000
//#define BAUDRATE 115200

// This enables the serial port associated to the Bluetooth interface
//#define BTENABLED              // Enable BT interface on AT90USB devices

//// The following define selects which electronics board you have. Please choose the one that matches your setup
// 10 = Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"
// 11 = Gen7 v1.1, v1.2 = 11
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 2  = Cheaptronic v1.0
// 20 = Sethi 3D_1
// 3  = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
// 35 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
// 4  = Duemilanove w/ ATMega328P pin assignment
// 5  = Gen6
// 51 = Gen6 deluxe
// 6  = Sanguinololu < 1.2
// 62 = Sanguinololu 1.2 and above
// 63 = Melzi
// 64 = STB V1.1
// 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version)
// 67 = Azteeg X3
// 7  = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 77 = 3Drag Controller
// 8  = Teensylu
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
// 82 = Brainwave (AT90USB646)
// 83 = SAV Mk-I (AT90USB1286)
// 9  = Gen3+
// 70 = Megatronics
// 701= Megatronics v2.0
// 702= Minitronics v1.0
// 90 = Alpha OMCA board
// 91 = Final OMCA board
// 301 = Rambo
// 21 = Elefu Ra Board (v3)

#define MOTHERBOARD 34

// Define this to set a custom name for your generic Mendel,
// #define CUSTOM_MENDEL_NAME "This Mendel"

// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg [www.uuidgenerator.net])
// #define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

// This defines the number of extruders
#define EXTRUDERS 2

//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)

#define POWER_SUPPLY 1

// Define this to have the electronics keep the powersupply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF

//============================== Delta Settings =============================
// Enable DELTA kinematics and most of the default configuration for Deltas
#define DELTA

// Make delta curves from many straight lines (linear interpolation).
// This is a trade-off between visible corners (not enough segments)
// and processor overload (too many expensive sqrt calls).

// NOTE NB all values for DELTA_* values MOUST be floating point, so always have a decimal point in them

// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 215.0 // mm

// Horizontal offset from middle of printer to smooth rod center.
#define DELTA_SMOOTH_ROD_OFFSET 145.5 // mm
// 130 is too low on edges?
// 142 is too low on edges (too high in center)
// 143 is too low on edges (too high in center)
// 145 is too low on edges (too high in center)
// 145.25? is too high on edges (too low in center)
// 145.5? is too high on edges (too low in center)
// 146 is too high on edges (too low in center)
// 147 is too high on edges (too low in center)
// 150 is too high on edges (too low in center)

// Horizontal offset of the universal joints on the end effector.
#define DELTA_EFFECTOR_OFFSET 19.9 // mm

// Horizontal offset of the universal joints on the carriages.
#define DELTA_CARRIAGE_OFFSET 19.5 // mm

// Effective horizontal distance bridged by diagonal push rods.


// Effective X/Y positions of the three vertical towers.
#define SIN_60 0.8660254037844386
#define COS_60 0.5
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
#define DELTA_TOWER3_X 0.0 // back middle tower

//=============================Thermal Settings  ============================
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 60 is 100k Maker's Tool Works Kapton Bed Thermister
//    1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
//                          (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)

#define TEMP_SENSOR_0 5
#define TEMP_SENSOR_1 5
#define TEMP_SENSOR_2 0

// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.

// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10  // (seconds)
#define TEMP_HYSTERESIS 3       // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW     1       // (degC) Window around target to start the residency timer x degC early.

// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define BED_MINTEMP 5

// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 300
#define HEATER_1_MAXTEMP 300
#define HEATER_2_MAXTEMP 275
#define BED_MAXTEMP 150

// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of

// PID settings:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
  //#define PID_DEBUG // Sends debug data to the serial port.
  //#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
  #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
                                  // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
  #define PID_INTEGRAL_DRIVE_MAX 255  //limit for the integral term
  #define K1 0.95 //smoothing factor within the PID
  #define PID_dT ((16.0 * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine

// If you are using a preconfigured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
//    #define  DEFAULT_Kp 22.2
//    #define  DEFAULT_Ki 1.08
//    #define  DEFAULT_Kd 114

// Makergear
//    #define  DEFAULT_Kp 7.0
//    #define  DEFAULT_Ki 0.1
//    #define  DEFAULT_Kd 12

// Mendel Parts V9 on 12V
//    #define  DEFAULT_Kp 63.0
//    #define  DEFAULT_Ki 2.25
//    #define  DEFAULT_Kd 440

// "M303 C8 S250" on e3d hotend
    #define  DEFAULT_Kp 16.46
    #define  DEFAULT_Ki 1.13
    #define  DEFAULT_Kd 59.88

#endif // PIDTEMP

// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED

// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed.  (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
    #define  DEFAULT_bedKp 10.00
    #define  DEFAULT_bedKi .023
    #define  DEFAULT_bedKd 305.4

//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
//    #define  DEFAULT_bedKp 97.1
//    #define  DEFAULT_bedKi 1.41
//    #define  DEFAULT_bedKd 1675.16

// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED

//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.

#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.

//=============================Mechanical Settings===========================

// Uncomment the following line to enable CoreXY kinematics
// #define COREXY

// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

  // fine Enstop settings: Individual Pullups. will be ignored if ENDSTOPPULLUPS is defined


// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
// Deltas never have min endstops
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders

// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false // For all extruders

#define INVERT_X_DIR false // DELTA does not invert
#define INVERT_Y_DIR false
#define INVERT_Z_DIR false

#define INVERT_E0_DIR true   // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR true    // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false   // for direct drive extruder v9 set to true, for geared extruder set to false

// Sets direction of endstops when homing; 1=MAX, -1=MIN
// deltas always home to max
#define X_HOME_DIR 1
#define Y_HOME_DIR 1
#define Z_HOME_DIR 1

#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true  // If true, axis won't move to coordinates greater than the defined lengths below.

// Travel limits after homing
#define X_MAX_POS 90
#define X_MIN_POS -90
#define Y_MAX_POS 90
#define Y_MIN_POS -90
#define Z_MIN_POS 0

//============================= Bed Auto Leveling ===========================

//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)


  // these are the positions on the bed to do the probing

  // these are the offsets to the prob relative to the extruder tip (Hotend - Probe)

  #define Z_RAISE_BEFORE_HOMING 4       // (in mm) Raise Z before homing (G28) for Probe Clearance.
                                        // Be sure you have this distance over your Z_MAX_POS in case

  #define XY_TRAVEL_SPEED 8000         // X and Y axis travel speed between probes, in mm/min

  #define Z_RAISE_BEFORE_PROBING 15    //How much the extruder will be raised before traveling to the first probing point.
  #define Z_RAISE_BETWEEN_PROBINGS 5  //How much the extruder will be raised when traveling from between next probing points

  //If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
  //The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
  // You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.


//If you have enabled the Bed Auto Levelling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!

  #define Z_SAFE_HOMING   // This feature is meant to avoid Z homing with probe outside the bed area.
                          // When defined, it will:
                          // - Allow Z homing only after X and Y homing AND stepper drivers still enabled
                          // - If stepper drivers timeout, it will need X and Y homing again before Z homing
                          // - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
                          // - Block Z homing only when the probe is outside bed area.

  #ifdef Z_SAFE_HOMING

    #define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2)    // X point for Z homing when homing all axis (G28)
    #define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2)    // Y point for Z homing when homing all axis (G28)



// The position of the homing switches
//#define MANUAL_HOME_POSITIONS  // If defined, MANUAL_*_HOME_POS below will be used
//#define BED_CENTER_AT_0_0  // If defined, the center of the bed is at (X=0, Y=0)

//Manual homing switch locations:

#define MANUAL_HOME_POSITIONS  // MANUAL_*_HOME_POS below will be used
// For deltabots this means top and center of the cartesian print volume.
#define MANUAL_Z_HOME_POS 224.75 // For delta: Distance between nozzle and print surface after homing.

#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E

// delta homing speeds must be the same on xyz
#define HOMING_FEEDRATE {200*60, 200*60, 200*60, 0}  // set the homing speeds (mm/min)

// default settings
// delta speeds must be the same on xyz
#define DEFAULT_AXIS_STEPS_PER_UNIT   {100, 100, 100, 80}  // default steps per unit for Kossel (GT2, 20 tooth)
#define DEFAULT_MAX_FEEDRATE          {500, 500, 500, 25}    // (mm/sec)
#define DEFAULT_MAX_ACCELERATION      {9000,9000,9000,10000}    // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.

#define DEFAULT_ACCELERATION          3000    // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION  3000   // X, Y, Z and E max acceleration in mm/s^2 for retracts

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
// #define EXTRUDER_OFFSET_X {0.0, 26.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 0.00}  // (in mm) for each extruder, offset of the hotend on the Y axis

// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK                20.0    // (mm/sec)
#define DEFAULT_ZJERK                 20.0    // (mm/sec) Must be same as XY for delta
#define DEFAULT_EJERK                 5.0    // (mm/sec)

//=============================Additional Features===========================

// the microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
//define this to enable eeprom support
//to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
// please keep turned on if you can.

// Preheat Constants
#define PLA_PREHEAT_FAN_SPEED 255   // Insert Value between 0 and 255

#define ABS_PREHEAT_FAN_SPEED 255   // Insert Value between 0 and 255

//LCD and SD support
//#define ULTRA_LCD  //general lcd support, also 16x2
//#define DOGLCD  // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
//#define ULTIPANEL  //the ultipanel as on thingiverse

// The MaKr3d Makr-Panel with graphic controller and SD support
// [reprap.org]
//#define MAKRPANEL

// The RepRapDiscount Smart Controller (white PCcool smiley
// [reprap.org]

// The GADGETS3D G3D LCD/SD Controller (blue PCcool smiley
// [reprap.org]
//#define G3D_PANEL

// The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCcool smiley
// [reprap.org]
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: [code.google.com]

// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// [reprapworld.com]
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click

// The Elefu RA Board Control Panel
// [www.elefu.com]
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: [github.com]

//automatic expansion
#if defined (MAKRPANEL)
 #define DOGLCD
 #define SDSUPPORT
 #define ULTIPANEL
 #define NEWPANEL

 #define DOGLCD
 #define U8GLIB_ST7920

 #define ULTIPANEL
 #define NEWPANEL

  #define NEWPANEL
  #define ULTIPANEL
#if defined(RA_CONTROL_PANEL)
 #define ULTIPANEL
 #define NEWPANEL
 #define LCD_I2C_TYPE_PCA8574
 #define LCD_I2C_ADDRESS 0x27   // I2C Address of the port expander


  // This uses the LiquidCrystal_I2C library ( [bitbucket.org] )
  // Make sure it is placed in the Arduino libraries directory.
  #define LCD_I2C_TYPE_PCF8575
  #define LCD_I2C_ADDRESS 0x27   // I2C Address of the port expander
  #define NEWPANEL
  #define ULTIPANEL

// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
  // This uses the LiquidTWI2 library v1.2.3 or later ( [github.com] )
  // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
  // (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
  // Note: The PANELOLU2 encoder click input can either be directly connected to a pin
  //       (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
  #define LCD_I2C_TYPE_MCP23017
  #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
  #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
  #define NEWPANEL
  #define ULTIPANEL

// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
#ifdef LCD_I2C_VIKI
  // This uses the LiquidTWI2 library v1.2.3 or later ( [github.com] )
  // Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
  // Note: The pause/stop/resume LCD button pin should be connected to the Arduino
  //       BTN_ENC pin (or set BTN_ENC to -1 if not used)
  #define LCD_I2C_TYPE_MCP23017
  #define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
  #define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
  #define NEWPANEL
  #define ULTIPANEL

// Shift register panels
// ---------------------
// 2 wire Non-latching LCD SR from:
// [bitbucket.org]
//#define SR_LCD
#ifdef SR_LCD
   #define SR_LCD_2W_NL    // Non latching 2 wire shiftregister
   //#define NEWPANEL

//  #define NEWPANEL  //enable this if you have a click-encoder panel
  #define SDSUPPORT
  #define ULTRA_LCD
  #ifdef DOGLCD // Change number of lines to match the DOG graphic display
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 5
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 4
#else //no panel but just lcd
  #ifdef ULTRA_LCD
  #ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
    #define LCD_WIDTH 20
    #define LCD_HEIGHT 5
    #define LCD_WIDTH 16
    #define LCD_HEIGHT 2

// default LCD contrast for dogm-like LCD displays
#ifdef DOGLCD
# endif

// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN

// Temperature status leds that display the hotend and bet temperature.
// If alle hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0

// M240  Triggers a camera by emulating a Canon RC-1 Remote
// Data from: [www.doc-diy.net]
// #define PHOTOGRAPH_PIN     23

// SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder.
//#define BARICUDA

//define BlinkM/CyzRgb Support
//#define BLINKM

* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas

// Number of servos
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// Servo Endstops
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles

#include "Configuration_adv.h"
#include "thermistortables.h"



//=============================Thermal Settings  ============================

  #define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control

//// Heating sanity check:
// This waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
// If the temperature has not increased at the end of that period, the target temperature is set to zero. 
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature
//  differ by at least 2x WATCH_TEMP_INCREASE
//#define WATCH_TEMP_PERIOD 40000 //40 seconds
//#define WATCH_TEMP_INCREASE 10  //Heat up at least 10 degree in 20 seconds

#ifdef PIDTEMP
  // this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
  // if Kc is choosen well, the additional required power due to increased melting should be compensated.
    #define  DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)

//automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode.
//The maximum buffered steps/sec of the extruder motor are called "se".
//You enter the autotemp mode by a M109 S T F
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
// you exit the value by any M109 without F*
// Also, if the temperature is set to a value 
//    Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
//                           as long as it supports dual x-carriages. (M605 S0)
//    Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
//                           that additional slicer support is not required. (M605 S1)
//    Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all  
//                           actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
//                           once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])

// This is the default power-up mode which can be later using M605. 

// As the x-carriages are independent we can now account for any relative Z offset
#define EXTRUDER1_Z_OFFSET 0.0           // z offset relative to extruder 0

// Default settings in "Auto-park Mode" 
#define TOOLCHANGE_PARK_ZLIFT   0.2      // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1        // the distance to raise Z axis when unparking an extruder

// Default x offset in duplication mode (typically set to half print bed width)

//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 5 
#define Y_HOME_RETRACT_MM 5 
#define Z_HOME_RETRACT_MM 5 // deltas need the same for all three axis

//#define QUICK_HOME  //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.

#define AXIS_RELATIVE_MODES {false, false, false, false}

#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)

//By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false

//default stepper release if idle

#define DEFAULT_MINIMUMFEEDRATE       0.0     // minimum feedrate

// Feedrates for manual moves along X, Y, Z, E from panel
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60}  // set the speeds for manual moves (mm/min)

// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME        20000

// If defined the movements slow down when the look ahead buffer is only half full
// (don't use SLOWDOWN with DELTA because DELTA generates hundreds of segments per second)
//#define SLOWDOWN

// Frequency limit
// See nophead's blog for more info
// Not working O
//#define XY_FREQUENCY_LIMIT  15

// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)

// MS1 MS2 Stepper Driver Microstepping mode table

// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]

// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)

//=============================Additional Features===========================

#define SD_FINISHED_STEPPERRELEASE true  //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.

#define SDCARD_RATHERRECENTFIRST  //reverse file order of sd card menu display. Its sorted practically after the filesystem block order. 
// if a file is deleted, it frees a block. hence, the order is not purely cronological. To still have auto0.g accessible, there is again the option to do that.
// using:

// The hardware watchdog should reset the Microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation.
//#define USE_WATCHDOG

// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
//  However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.

// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled.

// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in realtime
// does not respect endstops!
  #define BABYSTEP_XY  //not only z, but also XY in the menu. more clutter, more functions
  #define BABYSTEP_INVERT_Z false  //true for inverse movements in Z
  #define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
  #ifdef COREXY
    #error BABYSTEPPING not implemented for COREXY yet.

  #ifdef DELTA
    #ifdef BABYSTEP_XY
      #error BABYSTEPPING only implemented for Z axis on deltabots.

// extruder advance constant (s2/mm3)
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
// hooke's law says:		force = k * distance
// bernoulli's priniciple says:	v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE

#ifdef ADVANCE

  #define D_FILAMENT 2.85
  #define STEPS_MM_E 836
  #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
  #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)

#endif // ADVANCE

// Arc interpretation settings:

const unsigned int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement

// If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted
// You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT 
// in the pins.h file.  When using a push button pulling the pin to ground this will need inverted.  This setting should
// be commented out otherwise


// Power Signal Control Definitions
// By default use ATX definition
  #define POWER_SUPPLY 1
// 1 = ATX
#if (POWER_SUPPLY == 1) 
  #define PS_ON_AWAKE  LOW
// 2 = X-Box 360 203W
#if (POWER_SUPPLY == 2) 
  #define PS_ON_AWAKE  HIGH
  #define PS_ON_ASLEEP LOW

// Control heater 0 and heater 1 in parallel.

//=============================Buffers           ============================

// The number of linear motions that can be in the plan at any give time.  
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
#if defined SDSUPPORT
  #define BLOCK_BUFFER_SIZE 16   // SD,LCD,Buttons take more memory, block buffer needs to be smaller
  #define BLOCK_BUFFER_SIZE 16 // maximize block buffer

//The ASCII buffer for recieving from the serial:
#define MAX_CMD_SIZE 96
#define BUFSIZE 4

// Firmware based and LCD controled retract
// M207 and M208 can be used to define parameters for the retraction. 
// The retraction can be called by the slicer using G10 and G11
// until then, intended retractions can be detected by moves that only extrude and the direction. 
// the moves are than replaced by the firmware controlled ones.

#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt

//adds support for experimental filament exchange support M600; requires display

    #error EXTRUDER_RUNOUT_PREVENT currently incompatible with FILAMENTCHANGE
//=============================  Define Defines  ============================
  #error "You cannot use TEMP_SENSOR_1_AS_REDUNDANT if EXTRUDERS > 1"

  #error "You cannot use HEATERS_PARALLEL if EXTRUDERS > 1"

#if TEMP_SENSOR_0 > 0
#if TEMP_SENSOR_1 > 0
#if TEMP_SENSOR_2 > 0
#if TEMP_SENSOR_0 == -1
  #define HEATER_0_USES_AD595
#if TEMP_SENSOR_1 == -1
  #define HEATER_1_USES_AD595
#if TEMP_SENSOR_2 == -1
  #define HEATER_2_USES_AD595
  #define BED_USES_AD595
#if TEMP_SENSOR_0 == -2
  #define HEATER_0_USES_MAX6675
#if TEMP_SENSOR_0 == 0
#if TEMP_SENSOR_1 == 0
#if TEMP_SENSOR_2 == 0
  #undef BED_MINTEMP
  #undef BED_MAXTEMP


Re: Dual extrusion, E-only move causing XYZ motion, bug in Marlin?
January 28, 2014 08:42PM
Looks like the tool switch code tries to move the printer in cartesian space not delta... Commenting out the plan_set_position() and prepareMove() shown below fixes this for me.

  else if(code_seen('T'))
    tmp_extruder = code_value();
    if(tmp_extruder >= EXTRUDERS) {
    else {
      boolean make_move = false;
      if(code_seen('F')) {
        make_move = true;
        next_feedrate = code_value();
        if(next_feedrate > 0.0) {
          feedrate = next_feedrate;
      #if EXTRUDERS > 1
      if(tmp_extruder != active_extruder) {
        // Save current position to return to after applying extruder offset
        memcpy(destination, current_position, sizeof(destination));
      #ifdef DUAL_X_CARRIAGE
        // [removed from post because long and not relevant]
        // Offset extruder (only by XY)
        int i;
        for(i = 0; i < 2; i++) {
           current_position = current_position -
                                 extruder_offset[active_extruder] +
        // Set the new active extruder and position
        active_extruder = tmp_extruder;
      #endif //else DUAL_X_CARRIAGE
		// this part doesn't work on a delta. current_position is in cartesian space, not delta
		plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
        // Move to the old position if 'F' was in the parameters
        if(make_move && Stopped == false) {

Re: Dual extrusion, E-only move causing XYZ motion, bug in Marlin?
June 14, 2014 06:33AM
I found the same problem in my printer.My printer is the same as kossel,and I try to add dual extruders on the printer,but failed.when I send G-code 'T1',and the send 'G1 Xxx Yxx',the printer moves up in all 3 delta axes.How did you fix the problem?Should I fix the codes in codeseen'T' that you found?Do you mean that the Marlin Firmware could not support for dual extruders of delta?ou

Thanks for your reply.
Re: Dual extrusion, E-only move causing XYZ motion, bug in Marlin?
September 12, 2014 12:40PM
Can you give more explanation of the modification ?

Somebody has solved this problem ?

Projet : Delta Reverse, CoreXY
Google+ : [plus.google.com]
Youtube : [www.youtube.com]
Re: Dual extrusion, E-only move causing XYZ motion, bug in Marlin?
August 16, 2017 04:37PM
Any fix for this problem?
Sorry, only registered users may post in this forum.

Click here to login