Solidcore

From RepRap
Revision as of 14:29, 12 November 2020 by Shane Hooper (talk | contribs) (Created page with "SolidCore Printer The new corexy design is slowly materializing. For now we decided to focus on a simple design that can later be adapted and reconfigured for additional tools...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

SolidCore Printer The new corexy design is slowly materializing. For now we decided to focus on a simple design that can later be adapted and reconfigured for additional tools and configurations. After moving the z-axis motors to the bottom of the printer we explored a simple setup that would allow the machine to either use three independent driven z-axis motors or a single driven motor with the belt path connecting to three z-axis lead screws.

Modular Scalable All Metal Parts (or 3d printed) Linear Rails Balanced Carriage Pull Enclosure BOM utilizes most available parts Z-Axis: Independent Driven or Shared Belt Routing

The SolidCore design is a work in progress but our long term goal is to is to build a modular platform, not just a printer. Think of it as an ecosystem of parts that can be arranged in different configurations and adapted for unique applications.

Mods Upgrades Customized Parts

If you noticed the motor and idler mounts to be placed in the corners of the frame. This eleminates any design constraints of overall length and width. So if you need a printer to be a specific size or you already have a frame and rather not cut it down you’ll be able to use it. Eventually we would like to have a spreadsheet or configuration tool that will allow you to input the current frame or linear rails that already own and output length and rail options. Or if you’re aiming for a specific print volume, you can input the data and it will output the frame and rail length options.

SolidCore Carriage The carriage and gantry are designed to be light weight and strong. We currently use c-shaped aluminum stock because it reduces machining time. The reduced machining time and minimized waste helps but it’s a compromise. Thats going to change soon. We’ll probably make some changes such as reorienting the the y-axis linear rail into a vertical position similar to the RailCore but the current horizontal version will be easier to adapt an E3D Toolchanger. The top plates or motor/belt mounting plates that mount the idler pulleys have recently changed as well. The motor/belt mounting plates shown position the z-axis motors on top vs the bottom of the machine. When I first designed the plates I thought it would look cool with the motors on top but after I machined everything I realized that moving the bed up and down could cause deflection in the main plates.

The left motor plates are going to be re-machined to give room for a tool changer setup.

The overall footprint of the machine relative to print volume is somewhat excessive. In order to have a solid enclosure design I had to move the motors inside the frame boundary. This sacrificed the overall printer size to print volume ratio.

We’re aiming to balance the pull to the center of carriage instead above it or below. It seems to be more rigid and minimize deflection. The belts are somewhat within the same plane of the three linear rails to avoid rocking cantilever loads that other designs may have with the belts up high or down low.

At the moment the current build volume is about 350mm x 350mm x 350mm. After we make next set adjustments and assemble the next updates we’ll be looking at 400mm and a 500mm build plate.

This design was inspired by the RailCore, HEVO, D-Bot, Mike Fisher’s QuadRod and Maarten van Lier’s corexy build.