From RepRap
< User:Lrs5190
Revision as of 08:51, 29 November 2014 by Lrs5190 (talk | contribs)
Jump to: navigation, search

Blog #1

Mike posted an article involving sophisticated 3-D printing machines at lower cost for the population. Today the cheapest AM machine has a minimum price of $5000, and thus not readily available for the general population. There are hints that a metal laser sintering machine will have reduction in costs, however these costs will still probably be still high. The article describes two methods of expanding the availability of these printers and lowering their future costs. One is by developing materials and methods for use in existing consumer processes, such as FFF. One example,is by using the metal filler rod as a filament and an electric arc as the heat source. The other is by creating a process that integrates a proven technology into a low - cost system, such as leveraging existing inkjet technology into 3-D printing. Think about the application of this into the future. The majority of the population does not have access to basic service and basic materials. With a sophisticated and low-cost 3-D printer people will be able to buy cheap raw materials and print wrenches, forks, knives, plates, and basic necessity tools. Not mentioning that they can possibly print a house in the future and house objects like door parts, window frames, and beams.


Blog #2

Today I presented about 3-D printing in the medical field. Researchers from the University of Sydney and Harvard are developing 3-D printed blood vessels and tissues to be future implemented in patients. In the future, printing organs and printing limbs will be a good area of research for doctors who have ambition in expanding their research. The good thing about printing organs is that there will not be a great need for donors, reducing the risk of human fatality. Also imagine using this printer for replacing someone's arm of finger in the future. Possible reconstruction of muscles and bones are also a possibility. Using human tissue to heal and replace damaged parts are definitely an important step to cure several diseases and deformities in our bodies today.





Blog #3

You know, it is very interesting how 3-D printing is popular now a days. Before no one used to talk about it, nobody knew what exactly this "new" type of printer could do. In the present, people have been benefitted from aluminum parts with a precision of 2/1000in to composite materials fitting Boeing 747s. How to understand and process this new type of technology is still being digesting in society. For many people, printers mean printing paper with an ink, and to extreme cases, printing presentation projects. A lot of doubts come from the fact that solid and objects are now being printed from these machines, which sometimes require raw materials that are cheaper than a colored ink cartridge. Once this gets going and attractive to society, the horizons are infinite on what these machines can achieve -driven by of course people's needs. To be sitting on an office writing about how 3-D printers will change the world is like writing about airplanes 100 years ago. Questions like "will this thing be able to fly" or like "can it really be done" are always present and circulating day by day. How to explain the future? How to tell someone 10 years from now that reality will be so different from today? 20 years? 50 years? It is a hard question to solve, but certainly based on past experiences, we know the human kind is going forward in this area.

Link to article:

Blog #4

NASA just experimented having a 3-D printer in space. Not only testing how microgravity affected the process, torque, strain, stress, and different physical process were analyzed and compared to a twin printer located on Earth. The main purpose of this printer will be to replicate parts in space and minimize costs involved in producing parts in the Space Station. To be honest, it is a brilliant idea of humanity in general, since not only the program is stimulating the 3-D printing futuristic technology, but also testing materials affected by different physical properties. Topics like involving vaccum bags in future printing processes and control of gravity for proper machine work are studied at a primitive but substantial level which will allow future astronauts to make less mistakes when they are more substantially dependent of the 3-D printed materials. Think about cases like printing a cup or even a space shuttle aluminum panel. Depending on how mastered the technology will be, everything is possible. The question is, how long will it takes us and how many mistakes will we have until we figure out how to print complex parts at a low and efficient cost.


Blog #5

When we talk about 3-D printing we often associate it with price. How cheap will these machines be, and how much will we able to profit from its products. In order to answer these questions we need to first realize what are the needs of the population and what materials their products require. Now a days metals are of high demand, where all sorts of parts with appropriate specifications are ordered and wanted throughout the industry. The biggest problem about having the right part for the right product is the cost of producing it and its demand for mass production. Some individual parts are so expensive that its production is not worth its selling price. Of course the scenario changes when there is a mass production for a diverse public, but it is oftenly an issue within this type of industry. That is why today 3-D metal deposition is so expensive and hard to find in the market, since the public is still skeptful of trusting this new technology and forgetting their suppliers old method of production. I sincerely believe that when there is a greater trust in metal additive manufacturing between clients and suppliers prices will go down to a point that the antique technology will be eventually extinct.


Blog #6

The UK has significantly focused on 3-D printing technoogy for its young school kids on a program called MakerBot. It is a very good strategy to employ the knoweledge of this new born technology still being studied by scientists today, since by growing up with it these kids will have a greater assimilation with these machines and be able to improve their processes. One of the methods that are used is teaching at a young age these students how to code and understand computer language, essential for programming a printer and setting up its settings. Today superficial programs like the Slicer and the printer interface are used in Rep Raps to produced simple PLS parts, however it is largely believed that 3-D printers in the future will dominate the technology of direct metal deposition. Coding is ultimately essential to set up the constraints and limitations of the product, improving not only the accuracy but also the efficiency of the energy and the material being used.