Welcome! Log In Create A New Profile


printer is crazy and I am close to the same

Posted by Jagtech 
printer is crazy and I am close to the same
September 13, 2019 05:39PM
I have been trying to fix this for over a month now and I am not even close just close to going crazy

When the print starts out it homes and the there is a chatter like it is slamming into the end stop and the it prints way over to the right side of the print bed ( towards the x axis min side )

Here is my H config

* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see [www.gnu.org].

* Configuration.h
* Basic settings such as:
* - Type of electronics
* - Type of temperature sensor
* - Printer geometry
* - Endstop configuration
* - LCD controller
* - Extra features
* Advanced settings can be found in Configuration_adv.h

* ***********************************
* ***********************************
* You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
* Note: Update also Version.h !

//============================= Getting Started =============================

* Here are some standard links for getting your machine calibrated:
* [reprap.org]
* [youtu.be]
* [calculator.josefprusa.cz]
* [reprap.org]
* [www.thingiverse.com]
* [sites.google.com]
* [www.thingiverse.com]

//============================= DELTA Printer ===============================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.

//============================= SCARA Printer ===============================
// For a Scara printer replace the configuration files with the files in the
// example_configurations/SCARA directory.

// @section info

// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1
#define STRING_SPLASH_LINE2 WEBSITE_URL // will be shown during bootup in line 2

// *** VENDORS PLEASE READ *****************************************************
// Marlin now allow you to have a vendor boot image to be displayed on machine
// start. When SHOW_CUSTOM_BOOTSCREEN is defined Marlin will first show your
// custom boot image and them the default Marlin boot image is shown.
// We suggest for you to take advantage of this new feature and keep the Marlin
// boot image unmodified. For an example have a look at the bq Hephestos 2
// example configuration folder.
// @section machine

* Select which serial port on the board will be used for communication with the host.
* This allows the connection of wireless adapters (for instance) to non-default port pins.
* Serial port 0 is always used by the Arduino bootloader regardless of this setting.
* :[0, 1, 2, 3, 4, 5, 6, 7]
#define SERIAL_PORT 0

* This setting determines the communication speed of the printer.
* 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing.
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000]
#define BAUDRATE 250000

// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH

// The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup

// Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message
//#define CUSTOM_MACHINE_NAME "my tronxy x5s priner"

// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg [www.uuidgenerator.net])
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

// This defines the number of extruders
// :[1, 2, 3, 4]
#define EXTRUDERS 1

// Enable if your E steppers or extruder gear ratios are not identical

// For Cyclops or any "multi-extruder" that shares a single nozzle.

// A dual extruder that uses a single stepper motor
// Don't forget to set SSDE_SERVO_ANGLES and HOTEND_OFFSET_X/Y/Z
#define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1
//#define HOTEND_OFFSET_Z {0.0, 0.0}

* "Mixing Extruder"
* - Adds a new code, M165, to set the current mix factors.
* - Extends the stepping routines to move multiple steppers in proportion to the mix.
* - Optional support for Repetier Host M163, M164, and virtual extruder.
* - This implementation supports only a single extruder.
* - Enable DIRECT_MIXING_IN_G1 for Pia Taubert's reference implementation
#define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder
#define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164
//#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
//#define HOTEND_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis

* Select your power supply here. Use 0 if you haven't connected the PS_ON_PIN
* 0 = No Power Switch
* 1 = ATX
* 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
* :{ 0:'No power switch', 1:'ATX', 2:'X-Box 360' }
#define POWER_SUPPLY 0

// Enable this option to leave the PSU off at startup.
// Power to steppers and heaters will need to be turned on with M80.
//#define PS_DEFAULT_OFF

// @section temperature

//============================= Thermal Settings ============================

* --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
* Temperature sensors available:
* -3 : thermocouple with MAX31855 (only for sensor 0)
* -2 : thermocouple with MAX6675 (only for sensor 0)
* -1 : thermocouple with AD595
* 0 : not used
* 1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
* 2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
* 3 : Mendel-parts thermistor (4.7k pullup)
* 4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
* 5 : 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
* 6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
* 7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
* 71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
* 8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
* 9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
* 10 : 100k RS thermistor 198-961 (4.7k pullup)
* 11 : 100k beta 3950 1% thermistor (4.7k pullup)
* 12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
* 13 : 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
* 20 : the PT100 circuit found in the Ultimainboard V2.x
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
* 51 : 100k thermistor - EPCOS (1k pullup)
* 52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
* 55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
* 1047 : Pt1000 with 4k7 pullup
* 1010 : Pt1000 with 1k pullup (non standard)
* 147 : Pt100 with 4k7 pullup
* 110 : Pt100 with 1k pullup (non standard)
* Use these for Testing or Development purposes. NEVER for production machine.
* 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.
* 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.
* :{ '0': "Not used", '1':"100k / 4.7k - EPCOS", '2':"200k / 4.7k - ATC Semitec 204GT-2", '3':"Mendel-parts / 4.7k", '4':"10k !! do not use for a hotend. Bad resolution at high temp. !!", '5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '6':"100k / 4.7k EPCOS - Not as accurate as Table 1", '7':"100k / 4.7k Honeywell 135-104LAG-J01", '8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10':"100k / 4.7k RS 198-961", '11':"100k / 4.7k beta 3950 1%", '12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13':"100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '20':"PT100 (Ultimainboard V2.x)", '51':"100k / 1k - EPCOS", '52':"200k / 1k - ATC Semitec 204GT-2", '55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '66':"Dyze Design 4.7M High Temperature thermistor", '70':"the 100K thermistor found in the bq Hephestos 2", '71':"100k / 4.7k Honeywell 135-104LAF-J01", '147':"Pt100 / 4.7k", '1047':"Pt1000 / 4.7k", '110':"Pt100 / 1k (non-standard)", '1010':"Pt1000 / 1k (non standard)", '-3':"Thermocouple + MAX31855 (only for sensor 0)", '-2':"Thermocouple + MAX6675 (only for sensor 0)", '-1':"Thermocouple + AD595",'998':"Dummy 1", '999':"Dummy 2" }
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0

// Dummy thermistor constant temperature readings, for use with 998 and 999

// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
// from the two sensors differ too much the print will be aborted.

// Extruder temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.

// Bed temperature must be close to target for this long before M190 returns success
#define TEMP_BED_RESIDENCY_TIME 10 // (seconds)
#define TEMP_BED_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_BED_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.

// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5

// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150

//============================= PID Settings ================================
// PID Tuning Guide here: [reprap.org]

// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
//#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result.
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define K1 0.95 //smoothing factor within the PID

// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114

// MakerGear
//#define DEFAULT_Kp 7.0
//#define DEFAULT_Ki 0.1
//#define DEFAULT_Kd 12

// Mendel Parts V9 on 12V
//#define DEFAULT_Kp 63.0
//#define DEFAULT_Ki 2.25
//#define DEFAULT_Kd 440

#endif // PIDTEMP

//============================= PID > Bed Temperature Control ===============
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED


// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current


//#define PID_BED_DEBUG // Sends debug data to the serial port.

//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4

//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
//#define DEFAULT_bedKp 97.1
//#define DEFAULT_bedKi 1.41
//#define DEFAULT_bedKd 1675.16

// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED

// @section extruder

// This option prevents extrusion if the temperature is below EXTRUDE_MINTEMP.
// It also enables the M302 command to set the minimum extrusion temperature
// or to allow moving the extruder regardless of the hotend temperature.

// This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH.
// Note that for Bowden Extruders a too-small value here may prevent loading.

//======================== Thermal Runaway Protection =======================

* Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
* If you get "Thermal Runaway" or "Heating failed" errors the
* details can be tuned in Configuration_adv.h

#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed

//============================= Mechanical Settings =========================

// @section machine

// Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics
// either in the usual order or reversed
#define COREXY
//#define COREXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY

// Enable this option for Toshiba steppers

//============================== Endstop Settings ===========================

// @section homing

// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.
//#define USE_XMAX_PLUG
//#define USE_YMAX_PLUG
//#define USE_ZMAX_PLUG

// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors

// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined

// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.

// Enable this feature if all enabled endstop pins are interrupt-capable.
// This will remove the need to poll the interrupt pins, saving many CPU cycles.

//============================== Movement Settings ============================
// @section motion

* Default Settings
* These settings can be reset by M502
* You can set distinct factors for each E stepper, if needed.
* If fewer factors are given, the last will apply to the rest.
* Note that if EEPROM is enabled, saved values will override these.

* Default Axis Steps Per Unit (steps/mm)
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3]]]
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 100 }

* Default Max Feed Rate (mm/s)
* Override with M203
* X, Y, Z, E0 [, E1[, E2[, E3]]]
#define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 }

* Default Max Acceleration (change/s) change = mm/s
* (Maximum start speed for accelerated moves)
* Override with M201
* X, Y, Z, E0 [, E1[, E2[, E3]]]
#define DEFAULT_MAX_ACCELERATION { 2000, 2000, 200, 2000 }

* Default Acceleration (change/s) change = mm/s
* Override with M204
* M204 P Acceleration
* M204 R Retract Acceleration
* M204 T Travel Acceleration
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves

* Default Jerk (mm/s)
* "Jerk" specifies the minimum speed change that requires acceleration.
* When changing speed and direction, if the difference is less than the
* value set here, it may happen instantaneously.
#define DEFAULT_XJERK 20.0
#define DEFAULT_YJERK 20.0
#define DEFAULT_ZJERK 0.4
#define DEFAULT_EJERK 5.0

//============================= Z Probe Options =============================
// @section probes

// Probe Type
// Probes are sensors/switches that are activated / deactivated before/after use.
// Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
// You must activate one of these to use Auto Bed Leveling below.
// Use M851 to set the Z probe vertical offset from the nozzle. Store with M500.

// A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
// For example an inductive probe, or a setup that uses the nozzle to probe.
// An inductive probe must be deactivated to go below
// its trigger-point if hardware endstops are active.

// The BLTouch probe emulates a servo probe.
// The default connector is SERVO 0. Set Z_ENDSTOP_SERVO_NR below to override.
//#define BLTOUCH

// Z Servo Probe, such as an endstop switch on a rotating arm.
//#define Z_ENDSTOP_SERVO_NR 0
//#define Z_SERVO_ANGLES {70,0} // Z Servo Deploy and Stow angles

// Enable if you have a Z probe mounted on a sled like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

// Z Probe to nozzle (X,Y) offset, relative to (0, 0).
// X and Y offsets must be integers.
// In the following example the X and Y offsets are both positive:
// +-- BACK ---+
// | |
// L | (+) P | R <-- probe (20,20)
// E | | I
// F | (-) N (+) | G <-- nozzle (10,10)
// T | | H
// | (-) | T
// | |
// O-- FRONT --+
// (0,0)
#define X_PROBE_OFFSET_FROM_EXTRUDER 10 // X offset: -left +right [of the nozzle]
#define Y_PROBE_OFFSET_FROM_EXTRUDER 10 // Y offset: -front +behind [the nozzle]
#define Z_PROBE_OFFSET_FROM_EXTRUDER 0 // Z offset: -below +above [the nozzle]

// X and Y axis travel speed (mm/m) between probes
#define XY_PROBE_SPEED 8000
// Speed for the first approach when double-probing (with PROBE_DOUBLE_TOUCH)
// Speed for the "accurate" probe of each point
// Use double touch for probing

// Allen Key Probe is defined in the Delta example configurations.

// To continue using the Z-min-endstop for homing, be sure to disable Z_SAFE_HOMING.
// Example: To park the head outside the bed area when homing with G28.
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
// For a servo-based Z probe, you must set up servo support below, including
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
// - Otherwise connect:
// - normally-closed switches to GND and D32.
// - normally-open switches to 5V and D32.
// Normally-closed switches are advised and are the default.

// The Z_MIN_PROBE_PIN sets the Arduino pin to use. (See your board's pins file.)
// Since the RAMPS Aux4->D32 pin maps directly to the Arduino D32 pin, D32 is the
// default pin for all RAMPS-based boards. Most boards use the X_MAX_PIN by default.
// To use a different pin you can override it here.
// Setting the wrong pin may have unexpected and potentially disastrous consequences.
// Use with caution and do your homework.

// Enable Z_MIN_PROBE_ENDSTOP to use _both_ a Z Probe and a Z-min-endstop on the same machine.
// With this option the Z_MIN_PROBE_PIN will only be used for probing, never for homing.

// The Z_MIN_PIN will then be used for both Z-homing and probing.

// To use a probe you must enable one of the two options above!

// Enable Z Probe Repeatability test to see how accurate your probe is

* Z probes require clearance when deploying, stowing, and moving between
* probe points to avoid hitting the bed and other hardware.
* Servo-mounted probes require extra space for the arm to rotate.
* Inductive probes need space to keep from triggering early.
* Use these settings to specify the distance (mm) to raise the probe (or
* lower the bed). The values set here apply over and above any (negative)
* probe Z Offset set with Z_PROBE_OFFSET_FROM_EXTRUDER, M851, or the LCD.
* Only integer values >= 1 are valid here.
* Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.
* But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.
#define Z_CLEARANCE_DEPLOY_PROBE 10 // Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES 5 // Z Clearance between probe points

// For M851 give a range for adjusting the Z probe offset

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{ 0:'Low', 1:'High' }
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders

// Disables axis stepper immediately when it's not being used.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
// Warn on display about possibly reduced accuracy

// @section extruder

#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled

// @section machine

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR true
#define INVERT_Y_DIR false
#define INVERT_Z_DIR false

// @section extruder

// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR true
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false

// @section homing

//#define Z_HOMING_HEIGHT 4 // (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ...
// Be sure you have this distance over your Z_MAX_POS in case.

// Sets direction of endstops when homing; 1=MAX, -1=MIN
// :[-1, 1]
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1

#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.

// @section machine

// Travel limits after homing (units are in mm)
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define X_MAX_POS 310
#define Y_MAX_POS 310
#define Z_MAX_POS 300

//========================= Filament Runout Sensor ==========================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// RAMPS-based boards use SERVO3_PIN. For other boards you may need to define FIL_RUNOUT_PIN.
// It is assumed that when logic high = filament available
// when logic low = filament ran out
#define FIL_RUNOUT_INVERTING false // set to true to invert the logic of the sensor.
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.

//============================ Mesh Bed Leveling ============================

//#define MESH_BED_LEVELING // Enable mesh bed leveling.

#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_HOME_SEARCH_Z 4 // Z after Home, bed somewhere below but above 0.0.

//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]

//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.

#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.

// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z


//============================ Auto Bed Leveling ============================
// @section bedlevel

* Select one form of Auto Bed Leveling below.
* If you're also using the Probe for Z Homing, it's
* highly recommended to enable Z_SAFE_HOMING also!
* - 3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed.
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed.
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.

* Enable detailed logging of G28, G29, M48, etc.
* Turn on with the command 'M111 S32'.
* NOTE: Requires a lot of PROGMEM!


// Set the number of grid points per dimension.

// Set the boundaries for probing (where the probe can reach).

// The Z probe minimum outer margin (to validate G29 parameters).
#define MIN_PROBE_EDGE 10

// Probe along the Y axis, advancing X after each column
//#define PROBE_Y_FIRST


// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z

// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
// Number of subdivisions between probe points



// 3 arbitrary points to probe.
// A simple cross-product is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20


* Commands to execute at the end of G29 probing.
* Useful to retract or move the Z probe out of the way.
//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"

// @section homing

// The center of the bed is at (X=0, Y=0)
//#define BED_CENTER_AT_0_0

// Manually set the home position. Leave these undefined for automatic settings.
// For DELTA this is the top-center of the Cartesian print volume.
//#define MANUAL_X_HOME_POS 0
//#define MANUAL_Y_HOME_POS 0
//#define MANUAL_Z_HOME_POS 0 // Distance between the nozzle to printbed after homing

// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
// With this feature enabled:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.
// - If stepper drivers time out, it will need X and Y homing again before Z homing.
// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).
// - Prevent Z homing when the Z probe is outside bed area.
//#define Z_SAFE_HOMING

#define Z_SAFE_HOMING_X_POINT ((X_MIN_POS + X_MAX_POS) / 2) // X point for Z homing when homing all axis (G28).
#define Z_SAFE_HOMING_Y_POINT ((Y_MIN_POS + Y_MAX_POS) / 2) // Y point for Z homing when homing all axis (G28).

// Homing speeds (mm/m)
#define HOMING_FEEDRATE_XY (50*60)
#define HOMING_FEEDRATE_Z (4*60)

//============================= Additional Features ===========================

// @section extras

// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support

// To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
#define EEPROM_CHITCHAT // Please keep turned on if you can.

// Host Keepalive
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.

// M100 Free Memory Watcher
//#define M100_FREE_MEMORY_WATCHER // uncomment to add the M100 Free Memory Watcher for debug purpose

// G20/G21 Inch mode support

// M149 Set temperature units support

// @section temperature

// Preheat Constants
#define PREHEAT_1_TEMP_BED 70
#define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255

#define PREHEAT_2_TEMP_BED 110
#define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255

// Nozzle Park -- EXPERIMENTAL
// When enabled allows the user to define a special XYZ position, inside the
// machine's topology, to park the nozzle when idle or when receiving the G27
// command.
// The "P" paramenter controls what is the action applied to the Z axis:
// P0: (Default) If current Z-pos is lower than Z-park then the nozzle will
// be raised to reach Z-park height.
// P1: No matter the current Z-pos, the nozzle will be raised/lowered to
// reach Z-park height.
// P2: The nozzle height will be raised by Z-park amount but never going over
// the machine's limit of Z_MAX_POS.

// Specify a park position as { X, Y, Z }
// #define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }

// Clean Nozzle Feature -- EXPERIMENTAL
// When enabled allows the user to send G12 to start the nozzle cleaning
// process, the G-Code accepts two parameters:
// "P" for pattern selection
// "S" for defining the number of strokes/repetitions
// Available list of patterns:
// P0: This is the default pattern, this process requires a sponge type
// material at a fixed bed location, the cleaning process is based on
// "strokes" i.e. back-and-forth movements between the starting and end
// points.
// P1: This starts a zig-zag pattern between (X0, Y0) and (X1, Y1), "T"
// defines the number of zig-zag triangles to be done. "S" defines the
// number of strokes aka one back-and-forth movement. As an example
// sending "G12 P1 S1 T3" will execute:
// --
// | (X0, Y1) | /\ /\ /\ | (X1, Y1)
// | | / \ / \ / \ |
// A | | / \ / \ / \ |
// | | / \ / \ / \ |
// | (X0, Y0) | / \/ \/ \ | (X1, Y0)
// -- +--------------------------------+
// |________|_________|_________|
// T1 T2 T3
// Caveats: End point Z should use the same value as Start point Z.
// Attention: This is an EXPERIMENTAL feature, in the future the G-code arguments
// may change to add new functionality like different wipe patterns.

// Number of pattern repetitions

// Specify positions as { X, Y, Z }
// #define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)}
#define NOZZLE_CLEAN_END_POINT {100, 60, (Z_MIN_POS + 1)}

// Moves the nozzle to the initial position

// Print job timer
// Enable this option to automatically start and stop the
// print job timer when M104/M109/M190 commands are received.
// M104 (extruder without wait) - high temp = none, low temp = stop timer
// M109 (extruder with wait) - high temp = start timer, low temp = stop timer
// M190 (bed with wait) - high temp = start timer, low temp = none
// In all cases the timer can be started and stopped using
// the following commands:
// - M75 - Start the print job timer
// - M76 - Pause the print job timer
// - M77 - Stop the print job timer

// Print Counter
// When enabled Marlin will keep track of some print statistical data such as:
// - Total print jobs
// - Total successful print jobs
// - Total failed print jobs
// - Total time printing
// This information can be viewed by the M78 command.

//============================= LCD and SD support ============================

// @section lcd

// Here you may choose the language used by Marlin on the LCD menus, the following
// list of languages are available:
// en, an, bg, ca, cn, cz, de, el, el-gr, es, eu, fi, fr, gl, hr, it,
// kana, kana_utf8, nl, pl, pt, pt_utf8, pt-br, pt-br_utf8, ru, tr, uk, test
// :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cn':'Chinese', 'cz':'Czech', 'de':'German', 'el':'Greek', 'el-gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'kana':'Japanese', 'kana_utf8':'Japanese (UTF8)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt-br':'Portuguese (Brazilian)', 'pt-br_utf8':'Portuguese (Brazilian UTF8)', 'pt_utf8':'Portuguese (UTF8)', 'ru':'Russian', 'tr':'Turkish', 'uk':'Ukrainian', 'test':'TEST' }
#define LCD_LANGUAGE en

// LCD Character Set
// Note: This option is NOT applicable to Graphical Displays.
// All character-based LCD's provide ASCII plus one of these
// language extensions:
// - JAPANESE ... the most common
// - WESTERN ... with more accented characters
// - CYRILLIC ... for the Russian language
// To determine the language extension installed on your controller:
// - Compile and upload with LCD_LANGUAGE set to 'test'
// - Click the controller to view the LCD menu
// - The LCD will display Japanese, Western, or Cyrillic text
// See [github.com]

// You may choose ULTRA_LCD if you have character based LCD with 16x2, 16x4, 20x2,
// 20x4 char/lines or DOGLCD for the full graphics display with 128x64 pixels
// (ST7565R family). (This option will be set automatically for certain displays.)
// IMPORTANT NOTE: The U8glib library is required for Full Graphic Display!
// [github.com]
//#define ULTRA_LCD // Character based
//#define DOGLCD // Full graphics display

// SD Card support is disabled by default. If your controller has an SD slot,
// you must uncomment the following option or it won't work.
//#define SDSUPPORT

// Uncomment ONE of the following items to use a slower SPI transfer
// speed. This is usually required if you're getting volume init errors.

// Use CRC checks and retries on the SD communication.

// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.

// Use this option to override the number of step signals required to
// move between next/prev menu items.

* Encoder Direction Options
* Test your encoder's behavior first with both options disabled.
* Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
* Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.
* Reversed Value Editing only? Enable BOTH options.

// This option reverses the encoder direction everywhere
// Set this option if CLOCKWISE causes values to DECREASE

// This option reverses the encoder direction for navigating LCD menus.
// If CLOCKWISE normally moves DOWN this makes it go UP.
// If CLOCKWISE normally moves UP this makes it go DOWN.

// Individual Axis Homing
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.

// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//#define SPEAKER

// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
// Note: Test audio output with the G-Code:
// M300 S P

// Marlin supports a wide variety of controllers.
// Enable one of the following options to specify your controller.

// ULTIMAKER Controller.

// ULTIPANEL as seen on Thingiverse.
//#define ULTIPANEL

// Cartesio UI
// [mauk.cc]
//#define CARTESIO_UI

// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// [reprap.org]
//#define PANEL_ONE

// MaKr3d Makr-Panel with graphic controller and SD support.
// [reprap.org]
//#define MAKRPANEL

// ReprapWorld Graphical LCD
// [reprapworld.com]

// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
// [panucatt.com]
//#define VIKI2
//#define miniVIKI

// Adafruit ST7565 Full Graphic Controller.
// [github.com]

// RepRapDiscount Smart Controller.
// [reprap.org]
// Note: Usually sold with a white PCB.

// GADGETS3D G3D LCD/SD Controller
// [reprap.org]
// Note: Usually sold with a blue PCB.
//#define G3D_PANEL

// RepRapDiscount FULL GRAPHIC Smart Controller
// [reprap.org]

// MakerLab Mini Panel with graphic
// controller and SD support - [reprap.org]
//#define MINIPANEL

// [reprapworld.com]
// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key
// is pressed, a value of 10.0 means 10mm per click.

// RigidBot Panel V1.0
// [www.inventapart.com]

// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.

// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info: [github.com]

// Elefu RA Board Control Panel
// [www.elefu.com]

// Sainsmart YW Robot (LCM1602) LCD Display

// Generic LCM1602 LCD adapter
//#define LCM1602

// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info: [github.com]
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//#define LCD_I2C_PANELOLU2

// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//#define LCD_I2C_VIKI

// SSD1306 OLED full graphics generic display
//#define U8GLIB_SSD1306

// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//#define SAV_3DGLCD
//#define U8GLIB_SSD1306
#define U8GLIB_SH1106

// CONTROLLER TYPE: Shift register panels
// 2 wire Non-latching LCD SR from [goo.gl]
// LCD configuration: [reprap.org]
//#define SAV_3DLCD

//=============================== Extra Features ==============================

// @section extras

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0

// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS

// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: [www.doc-diy.net]
//#define PHOTOGRAPH_PIN 23

// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX

// Support for the BariCUDA Paste Extruder.
//#define BARICUDA

//define BlinkM/CyzRgb Support
//#define BLINKM

// Support for an RGB LED using 3 separate pins with optional PWM
//#define RGB_LED
#define RGB_LED_R_PIN 34
#define RGB_LED_G_PIN 43
#define RGB_LED_B_PIN 35

* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas

// Number of servos
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command

// Delay (in microseconds) before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY 300

// Servo deactivation
// With this option servos are powered only during movement, then turned off to prevent jitter.

* Support for a filament diameter sensor
* Also allows adjustment of diameter at print time (vs at slicing)
* Single extruder only at this point (extruder 0)
* Motherboards
* 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector
* 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)
* 301 - Rambo - uses Analog input 3
* Note may require analog pins to be defined for different motherboards
// Uncomment below to enable

#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation

#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel

#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)

#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially

//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.

Re: printer is crazy and I am close to the same
September 13, 2019 05:47PM


This shows that this is a very old version of Marlin. The first thing I'd try is to configure and install either the Marlin bugfix-2.0.x or at the very least bugfix-1.1.x. A huge number of bugs have been fixed since 1.1.0.
Re: printer is crazy and I am close to the same
September 13, 2019 05:52PM
This printer is a Tronxy x5s with a MKS Gen L board
Re: printer is crazy and I am close to the same
September 13, 2019 06:29PM
It sounds like your end stop for whichever axis is "chattering" has failed. Either a wire broke, or a connector came out or you got a static zap that killed that part of the board.


Kits: Folgertech Kossel 2020 upgraded E3Dv6, Anet A8 upgraded E3Dv6, Tevo Tarantula enhanced parts and dual-head, TronXY X5SA Pro(E3Dv6).
Scratch: Large bed Cartesian, exchangeable heads, Linear slide Delta, Maker-Beam XL Micro Delta, 220x220CoreXY.
Re: printer is crazy and I am close to the same
September 14, 2019 07:32AM
I checked the end stops by going to pronterface and doing a M119comand and the end stops trigger ok
Re: printer is crazy and I am close to the same
September 14, 2019 08:38AM
My guess is you have you X and Y endstops fliiped over...

For eg you home X and the Y endstop gets triggered, which gets really confusing.

Failing that post a video of what it is doing.
Re: printer is crazy and I am close to the same
September 14, 2019 08:52AM

"A comical prototype doesn't mean a dumb idea is possible" (Thunderf00t)
Re: printer is crazy and I am close to the same
September 17, 2019 09:42AM
found that y end stop is triggered all the time even when it is unplugged from the board
Re: printer is crazy and I am close to the same
September 17, 2019 12:27PM
found that y end stop is triggered all the time even when it is unplugged from the board

how did you not see this when " checked the end stops by going to pronterface and doing a M119 comand and the end stops trigger ok" ? several posts ago
Re: printer is crazy and I am close to the same
September 18, 2019 12:10PM
I thought it was working when everything homed but did not go to the not homed position to check again MY BAD

Edited 1 time(s). Last edit at 09/18/2019 12:11PM by Jagtech.
Re: printer is crazy and I am close to the same
September 18, 2019 12:12PM
frustration causes mistakes
Sorry, only registered users may post in this forum.

Click here to login